Kim loại là gì? Các công bố khoa học về Kim loại
Kim loại là một loại vật liệu có cấu trúc tinh thể đặc biệt và cho phép dẫn điện và dẫn nhiệt tốt. Các tính chất chung của kim loại bao gồm độ bền cao, dẻo dai,...
Kim loại là một loại vật liệu có cấu trúc tinh thể đặc biệt và cho phép dẫn điện và dẫn nhiệt tốt. Các tính chất chung của kim loại bao gồm độ bền cao, dẻo dai, dẫn điện điện tử và nhiệt tốt, có bề mặt sáng bóng và có khả năng chịu được các tác động vật lý và hóa học. Các ví dụ về kim loại bao gồm sắt, nhôm, đồng, kẽm, thiếc và bạc. Kim loại rất quan trọng trong nhiều ngành công nghiệp, từ sản xuất gia công, chế tạo ô tô, đóng tàu, điện tử, xây dựng, cho đến y tế và công nghệ hàng không.
Để cung cấp thêm thông tin chi tiết về kim loại, dưới đây là các đặc điểm quan trọng của kim loại:
1. Cấu trúc tinh thể: Kim loại có cấu trúc tinh thể đặc biệt được gọi là lưới tinh thể. Mỗi tinh thể kim loại được hình thành từ các hạt kim loại gọi là "hạt lưới" hoặc "hạt kim loại". Hạt kim loại này tạo thành lưới tinh thể bởi các liên kết ion hoặc liên kết kim loại. Sự tổ chức này làm cho kim loại có độ bền và tính chất dẻo đặc biệt.
2. Dẫn điện và dẫn nhiệt tốt: Mạng tinh thể của kim loại cho phép dòng điện chuyển qua mạch kim loại một cách dễ dàng. Điều này là do sự tồn tại của các electron tự do trong kim loại. Electrons tự do ở trong lưới tinh thể có thể di chuyển dễ dàng và dẫn truyền dòng điện. Kim loại cũng có khả năng dẫn nhiệt tốt do sự di chuyển tự do của các electron dẫn nhiệt trong lưới tinh thể.
3. Độ bền cao: Kim loại có độ bền cao vì các liên kết kim loại giữ các hạt kim loại lại với nhau. Điều này cho phép chịu được lực kéo và áp lực mà không bị déform hay gãy mất.
4. Hàm lượng kim loại: Để được coi là kim loại, vật liệu phải có hàm lượng kim loại cao, ít nhất 50% hoặc hơn. Điều này có nghĩa là các nguyên tố kim loại như sắt (Fe), nhôm (Al), đồng (Cu), kẽm (Zn), thiếc (Sn), và bạc (Ag) là một số ví dụ.
5. Các tính chất khác: Kim loại cũng có các tính chất khác như dễ uốn cong, dễ gia công, mềm dẻo, có thể được nâng cao độ cứng thông qua quá trình nhiệt luyện và gia công cơ học. Các kim loại cũng có khả năng chịu được tác động hóa học bình thường, nhưng có thể bị ăn mòn hoặc tác động bởi một số chất ngoại vi cụ thể.
Tổng quan, kim loại là một loại vật liệu quan trọng và rộng rãi được sử dụng trong nhiều ngành công nghiệp do tính chất đặc biệt của nó.
Danh sách công bố khoa học về chủ đề "kim loại":
Cấu trúc khung hữu cơ kim loại (MOFs) được tạo thành bằng cách liên kết các đơn vị vô cơ và hữu cơ thông qua các liên kết mạnh (tổng hợp mạng). Sự linh hoạt trong việc thay đổi hình học, kích thước và chức năng của các thành phần đã dẫn đến hơn 20.000 MOFs khác nhau được báo cáo và nghiên cứu trong thập kỷ qua. Các đơn vị hữu cơ là các carboxylat hữu cơ ditopic hoặc polytopic (và các phân tử tích điện âm tương tự khác), khi liên kết với các đơn vị chứa kim loại, tạo ra các cấu trúc tinh thể MOF có kiến trúc chắc chắn với độ xốp điển hình lớn hơn 50% thể tích tinh thể MOF. Giá trị diện tích bề mặt của MOFs như vậy thường dao động từ 1000 đến 10,000 m 2 /g, vượt qua các vật liệu xốp truyền thống như zeolites và carbons. Cho đến nay, MOFs có độ xốp cố định đã trở thành loại đa dạng và phong phú hơn bất kỳ lớp vật liệu xốp nào khác. Những khía cạnh này đã làm cho MOFs trở thành ứng viên lý tưởng để lưu trữ nhiên liệu (hydro và methane), bắt giữ carbon dioxide và ứng dụng xúc tác, để kể một vài ví dụ.
Khả năng thay đổi kích thước và đặc tính của cấu trúc MOF mà không thay đổi cấu trúc dưới của chúng đã tạo ra nguyên lý đồng cấu trúc và ứng dụng của nó trong việc tạo ra MOFs với kích thước lỗ lớn nhất (98 Å) và mật độ thấp nhất (0,13 g/cm 3 ). Điều này đã cho phép đưa vào chọn lọc các phân tử lớn (ví dụ, vitamin B 12 ) và protein (ví dụ, protein huỳnh quang xanh) và khai thác các lỗ chân lông làm bình phản ứng. Dọc theo những dòng này, độ bền nhiệt và hóa học của nhiều MOFs đã khiến chúng trở nên thích hợp cho các phương pháp chức năng hóa hậu tổng hợp vô cơ và phức hợp kim loại. Các khả năng này cho phép tăng đáng kể lưu trữ khí trong MOFs và đã dẫn đến việc nghiên cứu sâu rộng của chúng trong xúc tác các phản ứng hữu cơ, hoạt hóa các phân tử nhỏ (hydro, methane, và nước), tách khí, hình ảnh y sinh và dẫn proton, electron và ion. Hiện nay, các phương pháp đang được phát triển để tạo ra các tinh thể nano và siêu tinh thể của MOFs để đưa vào thiết bị.
Kiểm soát chính xác chuỗi lắp ráp của MOFs dự kiến sẽ thúc đẩy lĩnh vực này tiến xa hơn vào các lĩnh vực hóa học tổng hợp mới, trong đó có thể tiếp cận các vật liệu tinh vi hơn nhiều. Ví dụ, các vật liệu có thể được hình dung như có (i) các khoang liên kết với nhau để hoạt động riêng lẻ, nhưng hoạt động đồng bộ; (ii) sự uyển chuyển để thực hiện các hoạt động song song; (iii) khả năng đếm, phân loại và mã hóa thông tin; và (iv) khả năng động học với độ trung thực cao. Những nỗ lực theo hướng này đang được thực hiện thông qua việc giới thiệu một số lượng lớn các nhóm chức khác nhau trong lỗ chân lông của MOFs. Điều này tạo ra các cấu trúc đa biến trong đó sự sắp xếp các chức năng khác nhau dẫn đến việc cung cấp một sự kết hợp đồng bộ các thuộc tính. Công việc trong tương lai sẽ bao gồm việc lắp ráp các cấu trúc hóa học từ nhiều loại đơn vị xây dựng khác nhau, sao cho chức năng của các cấu trúc này được chỉ định bởi sự dị hỗn của sự sắp xếp cụ thể của các thành phần của chúng.
Các tinh thể nano là nền tảng của khoa học và công nghệ hiện đại. Việc làm chủ hình dạng của một tinh thể nano cho phép kiểm soát các tính chất của nó và tăng cường tính hữu ích cho một ứng dụng cụ thể. Mục tiêu của chúng tôi là trình bày một đánh giá toàn diện về các hoạt động nghiên cứu hiện tại tập trung vào tổng hợp kiểm soát hình dạng của các tinh thể nano kim loại. Chúng tôi bắt đầu với một phần giới thiệu ngắn gọn về sự hình thành hạt nhân và sự phát triển trong bối cảnh tổng hợp tinh thể nano kim loại, tiếp theo là thảo luận về các hình dạng có thể của tinh thể nano kim loại dưới các điều kiện khác nhau. Sau đó, chúng tôi tập trung vào một loạt các tham số thí nghiệm đã được nghiên cứu để thao tác sự hình thành hạt nhân và sự phát triển của tinh thể nano kim loại trong các pha dung dịch, nhằm tạo ra các hình dạng cụ thể. Chúng tôi giải thích chi tiết những phương pháp này bằng cách chọn các ví dụ trong đó đã có sự hiểu biết hợp lý về kiểm soát hình dạng quan sát được hoặc ít nhất các giao thức đã chứng minh là có thể lặp lại và kiểm soát được. Cuối cùng, chúng tôi nhấn mạnh một số ứng dụng đã được kích hoạt và/hoặc nâng cao bởi quá trình tổng hợp kiểm soát hình dạng của các tinh thể nano kim loại. Chúng tôi kết thúc bài viết này với những quan điểm cá nhân về các hướng mà nghiên cứu trong tương lai trong lĩnh vực này có thể đi tới.
Chúng tôi xem xét các khía cạnh cơ bản của oxit kim loại, chalcogenide kim loại và pnictide kim loại như các chất xúc tác điện hóa hiệu quả cho phản ứng tiến hoá oxy.
Sự quan tâm đối với tổng hợp quang hóa học đã được thúc đẩy một phần bởi nhận thức rằng ánh sáng Mặt Trời là nguồn năng lượng có hiệu quả vô tận. Các nhà hóa học cũng từ lâu đã nhận ra các mô hình tái hoạt hóa đặc biệt chỉ khả dụng thông qua kích hoạt quang hóa học. Tuy nhiên, hầu hết các phân tử hữu cơ đơn giản chỉ hấp thụ ánh sáng cực tím (UV) và không thể được kích hoạt bằng các bước sóng khả kiến chiếm phần lớn năng lượng Mặt Trời mà Trái Đất nhận được. Kết quả là, quang hóa học hữu cơ nói chung đòi hỏi việc sử dụng các nguồn sáng UV.
Trong vài năm qua, đã có sự hồi sinh của sự quan tâm đối với quang hóa tổng hợp, dựa trên việc nhận ra rằng các chromophore kim loại chuyển tiếp đã được khai thác rất hiệu quả trong thiết kế các công nghệ chuyển đổi năng lượng mặt trời cũng có thể chuyển đổi năng lượng ánh sáng khả kiến thành tiềm năng hóa học hữu ích cho mục đích tổng hợp. Ánh sáng khả kiến cho phép các phản ứng quang hóa hiệu quả của các hợp chất có liên kết yếu nhạy cảm với sự phân hủy UV. Thêm vào đó, các phản ứng quang hóa ánh sáng khả kiến có thể được thực hiện bằng cách sử dụng bất kỳ nguồn nào của ánh sáng trắng, bao gồm ánh sáng Mặt Trời, qua đó loại bỏ nhu cầu sử dụng các photoreactor UV chuyên dụng. Tính năng này đã mở rộng khả năng tiếp cận các phản ứng quang hóa cho một dải rộng hơn các nhà hóa học hữu cơ tổng hợp. Nhiều loại phản ứng hiện đã được chứng minh khả thi đối với quang xúc tác ánh sáng khả kiến thông qua chuyển electron do ánh sáng gây ra tới hoặc từ chromophore kim loại chuyển tiếp, cũng như các quá trình chuyển năng lượng. Tính dự đoán của các trung gian được tạo ra và dung sai của các điều kiện phản ứng đối với một loạt các nhóm chức đã cho phép ứng dụng các phản ứng này trong việc tổng hợp các phân tử mục tiêu ngày càng phức tạp.
Chiến lược tổng quát này trong việc sử dụng ánh sáng khả kiến trong tổng hợp hữu cơ đã và đang được chấp nhận bởi một cộng đồng các nhà hóa học tổng hợp đang phát triển. Nhiều nghiên cứu hiện tại trong lĩnh vực mới nổi này đang hướng đến việc khám phá các giải pháp quang hóa cho các mục tiêu tổng hợp ngày càng tham vọng. Quang xúc tác ánh sáng khả kiến cũng thu hút sự chú ý của các nhà nghiên cứu trong sinh học hóa học, khoa học vật liệu, và khám phá thuốc, những người nhận ra rằng các phản ứng này mang lại cơ hội đổi mới trong các lĩnh vực vượt ra ngoài tổng hợp hữu cơ truyền thống. Mục tiêu dài hạn của khu vực mới nổi này là tiếp tục cải thiện hiệu quả và tính tiện dụng tổng hợp và thực hiện mục tiêu lâu dài là thực hiện tổng hợp hóa học bằng Mặt Trời.
Quy trình sol-gel mang đến một hướng tiếp cận mới trong việc điều chế thủy tinh và gốm sứ. Xuất phát từ các tiền chất phân tử, một mạng lưới oxit được hình thành thông qua chuỗi phản ứng đa trùng hợp vô cơ. Các phản ứng này diễn ra trong dung dịch, và thuật ngữ “xử lý sol-gel” thường được sử dụng một cách rộng rãi để chỉ các phương pháp tổng hợp oxit vô cơ dựa trên “hóa học ướt”. Quy trình sol-gel mang lại nhiều lợi ích so với phương pháp truyền thống sử dụng “dạng bột”, cụ thể: (1) dễ dàng tạo ra các hệ đa thành phần đồng nhất chỉ bằng cách trộn các dung dịch tiền chất phân tử1,2; (2) nhiệt độ xử lý vật liệu có thể được giảm đáng kể, cho phép tạo ra các loại thủy tinh hoặc gốm sứ có tính chất khác thường3; (3) tính chất lưu biến của các hệ sol và gel cho phép chế tạo sợi, màng hoặc vật liệu composite thông qua các kỹ thuật như kéo sợi4, tráng nhúng5 hoặc thấm ngập6. Những lợi thế này giải thích lý do quá trình sol-gel đã nhận được sự quan tâm đáng kể về mặt khoa học và công nghệ trong thập kỷ vừa qua. Nhiều hội thảo quốc tế hiện nay tập trung vào chủ đề này, chẳng hạn như “Hội thảo Quốc tế về Thủy tinh và Thủy tinh-Gốm từ Gel”7-10, “Quá trình xử lý siêu cấu trúc cho gốm sứ, thủy tinh và composite”11-13 cũng như “Nâng cao chất lượng gốm sứ thông qua hóa học”14,15.
Một đặc tính độc đáo của quy trình sol-gel là khả năng tiến hành từ tiền chất phân tử đến sản phẩm cuối cùng, cho phép kiểm soát tốt hơn toàn bộ quá trình và tổng hợp những vật liệu được “thiết kế theo nhu cầu”. Do đó, để có thể làm chủ quy trình sol-gel, cần chú trọng đến mối liên hệ giữa hoạt tính hóa học, sự hình thành gel và hình thái bột. Bài viết này lần lượt xem xét (i) hóa học của các tiền chất phân tử, (ii) các hiện tượng kết tụ trong quá trình chuyển hóa từ sol-gel thành vật liệu, và (iii) các tính chất vật lý cùng ứng dụng của gel oxit kim loại chuyển tiếp.
Hóa học của quá trình sol-gel dựa trên các phản ứng hydroxyl hóa và ngưng tụ của tiền chất phân tử. Các phản ứng này đã được nghiên cứu sâu rộng trong trường hợp silica16. Tuy nhiên, dữ liệu về tiền chất oxit kim loại chuyển tiếp còn hạn chế. Hai lộ trình tổng hợp thường được mô tả trong tài liệu: (1) sử dụng dung dịch nước của muối vô cơ hoặc (2) sử dụng hợp chất hữu cơ kim loại. Phần đầu tiên của bài viết trình bày hóa học trong môi trường nước của các ion kim loại chuyển tiếp. Đề tài này khá phức tạp do sự tồn tại của nhiều loài phân tử khác nhau, phụ thuộc vào trạng thái oxy hóa, pH, và nồng độ. Thêm vào đó, đối với các cation không mang điện tích bốn, có thể hình thành oxit, hydroxit và thậm chí cả oxo-hydroxit.
Các phản ứng kích hoạt C–H tiến hành dưới điều kiện nhẹ gợi mở hơn cho các ứng dụng trong tổng hợp phân tử phức tạp. Bài báo tổng hợp các chuyển đổi C–H nhẹ đã được báo cáo từ năm 2011 và thảo luận về các khái niệm và chiến lược khác nhau đã tạo điều kiện cho tính nhẹ nhàng của chúng.
Các ống nano các bon được doping với liti hoặc kali có khả năng hấp thụ ∼20 hoặc ∼14 phần trăm trọng lượng của hydro ở nhiệt độ trung bình (200̐ đến 400°C) hoặc ở nhiệt độ phòng, tương ứng, dưới áp suất thường. Những giá trị này lớn hơn so với hệ thống kim loại hydride và hệ thống hấp phụ lạnh. Hydro lưu trữ trong các ống nano các bon được doping liti hoặc kali có thể được giải phóng ở nhiệt độ cao hơn, và chu trình hấp thụ-giải phóng có thể được lặp lại mà ít giảm khả năng hấp thụ. Khả năng hấp thụ hydro cao của các hệ thống này có thể được phát sinh từ cấu trúc xếp lớp mở đặc biệt của ống nano các bon được làm từ methan, cũng như tác dụng xúc tác của kim loại kiềm.
Việc khử điện hóa trực tiếp CO2 thành nhiên liệu và hóa chất bằng nguồn điện tái tạo đã thu hút sự chú ý đáng kể, một phần do những thách thức cơ bản liên quan đến khả năng phản ứng và độ chọn lọc, và một phần do tầm quan trọng của nó đối với các điện cực khuếch tán khí tiêu thụ CO2 trong công nghiệp. Trong nghiên cứu này, chúng tôi giới thiệu những tiến bộ trong việc hiểu biết về các xu hướng trong điện cực xúc tác CO2 thành CO của cacbon xốp pha tạp kim loại-nitơ có chứa nhóm chức M-N
Sản xuất phụ gia (AM), còn được gọi phổ biến là in 3D, cho phép chế tạo trực tiếp các bộ phận chức năng với hình dạng phức tạp từ các mô hình kỹ thuật số. Trong bài đánh giá này, tiến bộ hiện tại của hai quy trình AM phù hợp cho các ứng dụng implant chỉnh hình kim loại, cụ thể là nung chảy bằng laser chọn lọc (SLM) và nung chảy bằng chùm electron (EBM) được trình bày. Nhiều yếu tố thiết kế quan trọng như nhu cầu thu thập dữ liệu cho thiết kế cá nhân hóa theo bệnh nhân, độ rỗ phụ thuộc vào thiết kế cho các implant osteo-inductive, topo bề mặt của các implant và thiết kế nhằm giảm giáp bảo vệ ứng suất trong các implant được thảo luận. Các vật liệu sinh học sản xuất bằng phương pháp phụ gia như thép không gỉ 316L, titan-6nhôm-4vanadi (Ti6Al4V) và cobalt-chromium (CoCr) được nhấn mạnh. Các hạn chế và tiềm năng tương lai của các công nghệ này cũng được khám phá. © 2015 Hiệp hội Nghiên cứu Chỉnh hình. Xuất bản bởi Wiley Periodicals, Inc. J Orthop Res 34:369–385, 2016.
Một thí nghiệm trong chậu được thực hiện để so sánh hai chiến lược xử lý ô nhiễm bằng thực vật: tích tụ tự nhiên sử dụng thực vật siêu tích tụ Zn và Cd là
- 1
- 2
- 3
- 4
- 5
- 6
- 10